How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains
نویسندگان
چکیده
The plasma membrane of eukaryotic cells contains several types of lipids displaying high biochemical variability in both their apolar moiety (e.g., the acyl chain of glycerolipids) and their polar head (e.g., the sugar structure of glycosphingolipids). Among these lipids, cholesterol is unique because its biochemical variability is almost exclusively restricted to the oxidation of its polar -OH group. Although generally considered the most rigid membrane lipid, cholesterol can adopt a broad range of conformations due to the flexibility of its isooctyl chain linked to the polycyclic sterane backbone. Moreover, cholesterol is an asymmetric molecule displaying a planar α face and a rough β face. Overall, these structural features open up a number of possible interactions between cholesterol and membrane lipids and proteins, consistent with the prominent regulatory functions that this unique lipid exerts on membrane components. The aim of this review is to describe how cholesterol interacts with membrane lipids and proteins at the molecular/atomic scale, with special emphasis on transmembrane domains of proteins containing either the consensus cholesterol-binding motifs CRAC and CARC or a tilted peptide. Despite their broad structural diversity, all these domains bind cholesterol through common molecular mechanisms, leading to the identification of a subset of amino acid residues that are overrepresented in both linear and three-dimensional membrane cholesterol-binding sites.
منابع مشابه
A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes.
Cholesterol controls the activity of a wide range of membrane receptors through specific interactions and identifying cholesterol recognition motifs is therefore critical for understanding signaling receptor function. The membrane-spanning domains of the paradigm neurotransmitter receptor for acetylcholine (AChR) display a series of cholesterol consensus domains (referred to as "CARC"). Here we...
متن کاملComputational comparison of a calcium-dependent jellyfish protein (apoaequorin) and calmodulin-cholesterol in short-term memory maintenance
Memory reconsolidation and maintenance depend on calcium channels and on calcium/calmodulin-dependent kinases regulating protein turnover in the hippocampus. Ingestion of a jellyfish protein, apoaequorin, reportedly protects and/or improves verbal learning in adults and is currently widely advertised for use by the elderly. Apoaequorin is a member of the EF-hand calcium binding family of protei...
متن کاملMolecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement
Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb); neuroglobin (Ngb); myoglobin (Mb); hemoglobin (Hb) subunits Hba(α); and Hbb(β)] contain either a transmembrane (TM) helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate tha...
متن کاملCholesterol binding to ion channels
Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol...
متن کاملMapping Cholesterol Interaction Sites on Serotonin Transporter through Coarse-Grained Molecular Dynamics
Serotonin transporter (SERT) modulates serotonergic signaling via re-uptake of serotonin in pre-synaptic cells. The inclusion in cholesterol-enriched membrane domains is crucial for SERT activity, suggesting a cross-talk between the protein and the sterol. Here, we develop a protocol to identify potential cholesterol interaction sites coupling statistical analysis to multi-microsecond coarse-gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013